
Markov State Models Provide Insights into Dynamic Modulation of
Protein Function
Published as part of the Accounts of Chemical Research special issue “Protein Motion in Catalysis”.
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CONSPECTUS: Protein function is inextricably linked to protein dynamics. As we
move from a static structural picture to a dynamic ensemble view of protein structure
and function, novel computational paradigms are required for observing and
understanding conformational dynamics of proteins and its functional implications.
In principle, molecular dynamics simulations can provide the time evolution of
atomistic models of proteins, but the long time scales associated with functional
dynamics make it difficult to observe rare dynamical transitions. The issue of extracting
essential functional components of protein dynamics from noisy simulation data
presents another set of challenges in obtaining an unbiased understanding of protein
motions. Therefore, a methodology that provides a statistical framework for efficient
sampling and a human-readable view of the key aspects of functional dynamics from
data analysis is required. The Markov state model (MSM), which has recently become
popular worldwide for studying protein dynamics, is an example of such a framework.
In this Account, we review the use of Markov state models for efficient sampling of the hierarchy of time scales associated with
protein dynamics, automatic identification of key conformational states, and the degrees of freedom associated with slow
dynamical processes. Applications of MSMs for studying long time scale phenomena such as activation mechanisms of cellular
signaling proteins has yielded novel insights into protein function. In particular, from MSMs built using large-scale simulations of
GPCRs and kinases, we have shown that complex conformational changes in proteins can be described in terms of structural
changes in key structural motifs or “molecular switches” within the protein, the transitions between functionally active and
inactive states of proteins proceed via multiple pathways, and ligand or substrate binding modulates the flux through these
pathways. Finally, MSMs also provide a theoretical toolbox for studying the effect of nonequilibrium perturbations on
conformational dynamics. Considering that protein dynamics in vivo occur under nonequilibrium conditions, MSMs coupled
with nonequilibrium statistical mechanics provide a way to connect cellular components to their functional environments.
Nonequilibrium perturbations of protein folding MSMs reveal the presence of dynamically frozen glass-like states in their
conformational landscape. These frozen states are also observed to be rich in β-sheets, which indicates their possible role in the
nucleation of β-sheet rich aggregates such as those observed in amyloid-fibril formation. Finally, we describe how MSMs have
been used to understand the dynamical behavior of intrinsically disordered proteins such as amyloid-β, human islet amyloid
polypeptide, and p53. While certainly not a panacea for studying functional dynamics, MSMs provide a rigorous theoretical
foundation for understanding complex entropically dominated processes and a convenient lens for viewing protein motions.

■ INTRODUCTION

Proteins are the main orchestrators of life, performing diverse
functions in our body. For example, as you read this Account,
protein (rhodopsin)1 in your eye helps you see the text, and
another protein (CAMKII)2 controls how much information
from this Account is stored in your long-term memory. The
diversity in protein function originates from the different
structures they adopt. Much of what we know about the protein
structure−function relationship comes from the large number
of protein structures obtained through X-ray crystallography.
The year 2014 marks the centenary celebration of X-ray
crystallography with the United Nations declaring it as the
International Year of Crystallography. Over the last century, the
field of X-ray crystallography (in particular macromolecular
crystallography) has dramatically improved our understanding

of protein function by providing much needed molecular
perspectives on basic biological mechanisms.3 Today, the
Protein Data Bank contains about 100,000 crystal structures of
proteins providing complex but “static” structural information.
The dynamic nature of proteins has been known since the first
crystal structure of myoglobin was reported in 1958.4,5 Crystal
structures represent the time and space average over a large
number of molecules within a crystal (a 10 μm cubic crystal
would contain ∼1011 molecules of a 5 nm diameter protein).6

Even such a large number of molecules in the crystal do not
provide a complete dynamical picture because crystallization
conditions are designed to stabilize a particular conformation of
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the protein and are unable to represent all relevant functional
states or the dynamics between them. It is now widely
appreciated that the protein motions occur over a spectrum of
time scales and sample a variety of conformations that can be
either functionally competent (active) or incompetent (in-
active). Furthermore, experimental and computational studies
have shown these motions are critical for protein function.7

Conformational changes in proteins have been extensively
studied with a particular focus on enzymes involved in a variety
of disease pathways. Both experimental and computational
techniques, such as nuclear magnetic resonance (NMR)
spectroscopy, cryo-electron microscopy, small-angle X-ray
scattering, and molecular dynamics simulations, have been
successfully used to describe the protein motions and their
associated time scales for the interconversion between their
conformational states.7−11 Molecular computations have a
distinct advantage compared with the other methods because
they provide not only the dynamic information but also the
structural information in atomistic detail as a function of time.
In this Account, we provide a computational perspective on

the role of protein dynamics in fundamental thermodynamics,
kinetic aspects of protein function, and how ligands modulate
protein dynamics. In order to demonstrate these effects, we
review interesting results from the recent research performed in
our laboratory that point to a promising future for this area of
inquiry. These systems include protein kinases (enzymes that
phosphorylate other proteins and are responsible for aberrant
cellular signaling in cancer), G-protein coupled receptors (key
signaling proteins that sense a wide range of extracellular signals
such as hormones, drugs, photons, ions, etc.), intrinsically
disordered proteins such as amyloid-β, human islet amyloid
polypeptide (hIAPP), and p53 (a pivotal tumor suppressor and
a target for anticancer drugs).9,11−13 These proteins not only
represent some of the most prominent targets for drug
discovery but have also been studied extensively from the
viewpoint of protein conformational dynamics.14

■ MARKOV STATE MODELS AND PROTEIN
DYNAMICS

From a viewpoint of biology, the key questions about protein
dynamics and function involve a structural definition of key
conformational states of a protein, the mechanism of protein
conformational change, the structure of transition states, and
the height of barriers connecting these key conformations. For
the physicists, the key challenge has been to reduce the
complexity of the living world into simple models. The concept

of an energy landscape has been widely used as a bridge
connecting the disparate worlds of physics and biology. Given
the appropriate degrees of freedom that describe rate-limiting
protein motions (i.e., reaction coordinates), an energy
landscape reduces the complexity of protein motions into a
simpler human-comprehensible model. The idea of reducing
the complexity of protein dynamics to a few well-chosen
parameters provides significant advantages in terms of
effectively eliminating the information from irrelevant protein
motions and focusing on the thermodynamically and kinetically
relevant motions. However, it has been shown that choosing a
set of order parameters even for simple systems such as alanine
dipeptide in water, pulling of DNA and RNA hairpins, etc. is
nontrivial.15 This problem arises from the large number of
degrees of freedom associated with protein motions. In other
words, it is difficult to construct a simple low-dimensional
energy landscape for complex and entropically dominated
processes such as protein conformational change without using
a priori structural information.
Markov state models (MSMs) provide an alternate approach

to these challenges by identifying the kinetically relevant states
and the rates of interconversion between them. MSMs have
been used extensively for modeling protein folding, and several
recent studies have reported the successful use of MSMs to
investigate protein conformational change.9,11,16,17 MSMs
provide a summarized view of the ensemble of spontaneous
fluctuations exhibited by the protein at equilibrium by stitching
together a set of individual short molecular simulation
trajectories.10,18,19 MSMs and their application to the
conformational dynamics of biological systems have been the
subject of several recent reviews.8,10,20,21 Consequently, only a
brief nontechnical description of MSMs is included in this
Account. MSMs describe the conformational dynamics of
proteins in terms of conversions between the conformational
states. Similar conformations are categorized into states
typically on the basis of some structural metric. The rates of
interconversion between states are estimated from the
simulation trajectories. Furthermore, advanced theoretical
frameworks such as transition path theory (TPT)22 could be
used along with the transition probability matrix between states
to identify the highest flux pathways and bottlenecks.
Finally, the number of states in a MSM can be tuned to

obtain a model of desired resolution.21 Figure 1a shows the free
energy landscape associated with the conformational change in
a GPCR with order parameters chosen a priori based on the
available structural information. An MSM of the conformational

Figure 1. (a) Free energy landscape of agonist-bound GPCR (β2-AR) using helix3−helix6 distance and the twisting of the NpxxY region in helix 7 as
the order parameters. (b) Network representation of the 3000-state MSM built from the simulations of agonist-bound GPCR with each circle
representing an individual conformational state. (c) Ten-state MSM built from the 3000-state MSMs using spectral clustering methods to identify
kinetically relevant states. The circles in the 3000-state MSM are colored according to their membership in the coarse-grained ten-state MSM. The
weight of arrow indicates the transition probability between states. Image reproduced with permission from reference 9.
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dynamics of the same GPCR with 3000 states (Figure 1b)
highlights the complexity of microstate MSMs, which could be
used to observe the time evolution of any structural metric. At
the same time, the high-resolution MSM could be reduced to a
simple few state model, which provides the same insights about
existence of an intermediate state and a rarely populated active
state as the carefully chosen order parameters in Figure 1a.
Therefore, we argue that MSMs represent a more natural
framework for analysis of protein dynamics by embedding a
high dimensional space into a more tractable representation by
coarse-graining the motions in accordance with the hierarchy of
time scales.

Sampling the hierarchy of time scales

Sampling the biological phenomena involving dynamics on a
slow time scale (microseconds to milliseconds) has been one of
the key challenges associated with molecular simulations. In
principle, all conformations of the protein and their associated
time scales could be obtained using large-scale molecular
dynamics simulations. However, the long activation time scales
push such problems out of the reach of high performance
computing. One approach to surmount this challenge is to use
specialized hardware and software for generating a single
realization of the entire process. However, a quick look at the
long trajectory of any slow time scale process would indicate
that proteins spend a significant amount of simulation time
fluctuating within the basins associated with long-lived
metastable states and a rare thermal fluctuation leads to the
barrier-crossing event. It can be shown that the waiting time for
observing such rare transition is exponentially distributed.
Therefore, a statistical approach that samples the rare
transitions more effectively than a few long trajectories is
required.
In this Account, we discuss a statistical approach for sampling

the hierarchy of time scales associated with protein dynamics,
which has been successfully used recently to sample conforma-
tional transitions (100 μs to millisecond time scale) associated
with activation of kinases and GPCRs.9,11 Adaptive sampling
algorithms for building MSMs provide one such statistical
alternative, where simulations are run in an iterative and
exploratory fashion to minimize uncertainties in some property
of the model.23 The procedure for adaptive sampling comprises
the iteration of three steps: running a series of short MD
trajectories from initial collection of structures, building an
MSM based on the aggregate data, and seeding new MD
trajectories based on the sampling criterion. Weber and Pande
have shown that starting new simulations from states that are
least populated in the MSM provides a converged MSM with
minimum number of additional simulations.24 The convergence
of MSMs at each round of sampling could be judged using
relative entropy measures such as Kullback−Leibler divergence
between the two MSMs, which acts as a distance metric
between probability distributions in information theory.
Therefore, by design, MSM-based adaptive sampling avoids
well-sampled regions of the protein’s conformational landscape
and can effectively sample the least populated regions. Effective
use of such sampling techniques in molecular dynamics studies
could allow for the generation of accurate MSMs from a
minimal set of short trajectories, enhancing both model
accuracy and sampling efficiency.

Automatic Identification of Conformational States

Modern chemical biology and drug discovery efforts seek to
develop new targets for modulating the behavior of key

proteins involved in disease pathways. The issue of drug
selectivity hampers the search for these novel small molecule
inhibitors. Drug design for kinases, the major drug target for
cancer, illustrates this problem clearly. Kinases catalyze the
transfer of the γ-phosphate group from ATP to the hydroxyl
group of specific serine, threonine, or tyrosine residues. The
small molecule inhibitors of kinases target the highly conserved
ATP-binding pocket in the inactive/active crystal structures.
The inactive and active states of kinases share similar structural
features due to the functional similarity between kinases and
therefore provide limited selectivity. Identification of other
metastable states, which are not structurally similar to inactive
or active state, provides an opportunity for novel and selective
drug design.25

Long-time scale molecular dynamics simulations could
provide the sampling of the conformational landscape of
proteins, but analysis of these massive simulation data sets in an
unbiased manner presents a major challenge.10 In other words,
how do we turn these massive data sets into scientific insights
about protein dynamics? Traditional analysis approaches
involve watching movies of protein dynamics and inspecting
the time evolution of order parameters identified mainly from
differences in available crystal structures. Machine learning
approaches and quantitative methods like principal component
analysis (PCA)26 have been used to identify key conformational
motions, but these methods fail to exploit the kinetic
information embedded in the MD data sets.27 The big
challenge in MSM construction involves obtaining an
appropriate definition of the state space to discretize the
conformational space into discrete states.
Recently, McGibbon et al.28 have reported the use of hidden

Markov models (HMMs) toward protein dynamics. These
models are built on the idea that the complex protein dynamics
in a large number of degrees of freedom could be reduced to a
single time series representing dynamics within the set of few
conformational states. The states are represented as emission
(multivariate normal functions) distributions in the space of a
large set of selected degrees of freedom such as distances
between all α-carbons, distance of center of mass of protein
side chains from their position in the reference structure, etc. In
HMMs, the states do not represent a discrete partition of the
conformational space of the system but provide a probabilistic
estimate of observing a particular conformation as part of the
each HMM state. The HMM approach simultaneously
optimizes both the state decomposition (mean and distribution
of the emission distribution corresponding to each state) along
with the transition probabilities among states, thus providing a
procedure for optimal construction of the MSMs. This is the
main advantage of using HMMs over regular MSMs. The
reversible hidden Markov models have been successfully
applied for understanding the activation mechanism of c-src
kinase (Figure 2).28 The model not only correctly identifies the
inactive and active state of the src kinase also identifies the
intermediate state along the activation pathway. Furthermore,
the unfolding of activation loop (red) and switching of the
electrostatic network involving Lys295, Glu310 and Arg409 are
the hallmark of the src kinase activation mechanism; the model
identifies these metrics without any a priori structural
information about the active state of kinase. Similarly, a
strategy called time independent component analysis (tICA)
has been recently developed to identify metrics that best
differentiate slow modes of protein motion.29,27 The method
uses independent component analysis (ICA) to identify the
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metrics, and the slowest decorrelating principal components are
then used for partitioning the conformational space of a
protein. The methodology has been successfully used to study
conformational transitions in peptoids30 and folding dynamics
of NTL9.27

In the above sections, we reviewed how Markov state models
present a natural framework for sampling and analysis of
protein dynamics. Application of these models to challenging

scientific problems has yielded novel insights into mechanism
of protein conformational change and function. In the
subsequent sections, we review the key scientific insights
obtained from this unbiased analysis of large protein dynamics
data sets.

■ MODULATION OF PROTEIN FUNCTION

Molecular Switches

Identification of functionally relevant substructures called
“molecular switches” within the protein is key to understanding
their activation mechanism. Crystallographic data along with
MD simulations and other theoretical techniques have provided
a mechanism of activation of key cellular signaling proteins in
terms of the conformational switching of individual molecular
switches.31,32 Recently, Kohlhoff et al. used MD simulation on
Google Exacycle33 to sample the conformational landscape of
β2-AR (β2-adrenergic receptor, a GPCR that interacts with
hormones or neurotransmitters such as adrenaline).9 One of
the key results of this study is that molecular switches related to
the activation mechanism of β2-AR can be identified by in silico
methods (Figure 3a). These structural elements of β2-AR have
been identified by several decades of experimental research on
GPCR activation. This study reports a new paradigm where
large-scale simulations of GPCR could help identify these key
residues for another GPCR in a matter of several months.
Figure 3b shows the long-time scale behavior of the molecular
switches in β2-AR. The long time scale trajectories are
generated using a kinetic Monte Carlo scheme, which provides
a series of states visited over time starting from a particular
MSM state. The next state in the series is picked depending
upon the probability of transition from the current state to all
other states. The jump between states corresponds to an
increment of τ (lag time of the model) in real time. The 150 μs
trajectories of β2-AR (Figure 3b) show the toggling of
individual molecular switches required for the GPCR activation.
Similarly, in our recent work on the activation mechanism of

src-kinase, we have not only identified the key “molecular
switches” but also show that the key metastable states of src

Figure 2. Three state hidden Markov model identifies the key
conformational states along the activation pathway of c-src kinase. (A)
Structure of the c-src kinase. (B) The projection of HMM states onto
two degrees of freedom representing the RMSD of activation loop
from inactive crystal structure (2SRC) and switching of the
electrostatic network, respectively. (C) Snapshots of the three HMM
states showing atomistic details of the activation pathway. Image
reproduced with permission from reference 28.

Figure 3. (a) Molecular switches involved in β2-AR activation. (b) MSM trajectory showing the toggling of individual molecular switches during
activation. Stitching together individual short MD trajectories using a kinetic Monte Carlo scheme on the MSM transition probability matrix
generated these long trajectories. Image reproduced with permission from reference 9.
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kinase involve “toggling” of the individual molecular switches.11

The inactive and intermediate states (Figure 2) differ in terms
of the conformation of the activation loop, which is folded in
the inactive state and unfolded in the intermediate state. The
intermediate and the active states differ in the state of the
electrostatic switch, which involves E310−R409 H-bond in the
intermediate state and K295−E310 H-bond in the active state.
The results show that MSMs of MD data sets not only can
capture the novel intermediate states of proteins but also can
automatically identify the key structural features involved in the
activation of proteins.
Modulation of Protein Function via Multiple Pathways

Minor changes in the molecular structure of a drug or ligand
are sufficient for biasing the protein function. For example,
monoamines in chocolate and the psychedelic drug LSD bind
the same GPCR but induce different physiological responses
through G-protein and β-arrestin dependent signaling path-
ways, respectively. The ligand bias theory suggests that
differences in the chemical structure of drugs change the
protein’s conformational ensemble. However, the exact nature
of these structural changes has not been elucidated. Our recent
work has shown that GPCRs and kinases exist in multiple
conformational states, with active and inactive states connected
via multiple pathways. Furthermore, we have found that ligands
modulate the protein function by redistributing flux along
multiple pathways. Figure 4a,b shows the projection of highest
flux pathways on the three molecular switches (Figure 3) that
control GPCR activation. Figure 4c,d shows how ligands alter
the sequence of events along the activation pathway by
allosterically modifying the conformational preferences of
molecular switches. Similarly, for kinase activation, multiple
pathways connect the two functional states indicating a generic
mechanism where different ligands modulate the stability of
different states and thereby influence the overall function.
Nonequilibrium Perturbations

Comprehending cellular dynamics on the nanoscale represents
the next great frontier in biophysics. A complete “control
systems” approach to cells, by which one can use stimuli to
manipulate the output of cellular pathways, promises to
revolutionize our understanding and treatment of human

disease, provide a robust framework for synthetic biology, and
unlock a novel world of nanotechnological possibilities. While
phenomenological models for cellular systems can provide great
insight into biological pathways, a new level of detail is required
to design, perturb, and repair control systems based on cellular
architecture. Atomistic simulations are becoming ever more
capable of illustrating larger and larger cellular components at
meaningful time scales. The utility of such grand simulations for
understanding cells, however, is attenuated by a gap in current
methodology. Fundamentally, cellular infrastructure operates
out of equilibrium, but the theoretical treatment of non-
equilibrium systems is far from trivial. As standard simulations
are performed under constraints of detailed balance, even a full
quantum mechanical treatment of the cell, without modifica-
tion, would fail to capture the essence of driven biomolecular
pathways. How can we connect cellular components to their
functional environments and simulate the physics of life?
Weber et al. have recently used space−time perturbation

theory (s-ensemble) coupled with MSMs to study non-
equilibrium effects in protein folding dynamics.34,35 In
particular, the goal of the study was to identify frozen glassy
states in protein dynamics and their role in protein conforma-
tional dynamics and function. The effect of the functional
environment is taken into account by applying a modifying field
or the s-field that suppresses or enhances the transitions among
states via the following equation T(s) = U e−s + D, where T is
the titled matrix and U and D are the off-diagonal and diagonal
components of the original transitional probability matrix. To
study dynamics in the biased s-ensemble, the MSM transition
probability matrix is modified to obtain a tilted matrix for a
given value of s-field and then the eigenvalues of this tilted
matrix provide the shifts in the equilibrium probabilities of
states in the biased ensemble. Therefore, for high s-values (s >
0), states with high self-transition probabilities are observed in
the conformational ensemble, and for low s-values (s < 0),
faster transitions among the extended conformations are
observed. This biased dynamics explains the reasons behind
differences in the folding time scales of proteins of similar
sequence length. In brief, the folding times for proteins that
prefer conformational states with high self-transition probability
(glassy dynamics) have slower folding time scales. Surprisingly,

Figure 4. Modulation of GPCR-activation pathways by ligands. Activation pathways adopted in the presence of an agonist (A) and inverse-agonist
(B). The corresponding structural changes along the highest flux activation pathway in the presence of an agonist (C) and inverse-agonist (D). The
pathways are obtained using transition path theory on MSM transition probability matrix. Image reproduced with permission from reference 9.
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it was found that glassy states tend to have high β-sheet
content, indicating a role of glassy dynamics in amyloid fibril
formation and stability (Figure 5).
Similarly, specialized statistical mechanical tools offer hope

for characterizing dissipative processes in a rigorous fashion.
Famous among statistical physicists, relationships like the
Crooks fluctuation theorem describe the probabilities of
entropy producing (i.e., dissipative) trajectories in general
terms. Starting with Lebowitz and Spohn, researchers have
beautifully synthesized such fluctuation theorems with the
theory of Markov chains so that entropy-producing dynamics
can be studied with statistical rigor.36−38 Recently, we have
found that the dominant dissipative trajectories in biased
dynamics align well with the activation pathways of both GPCRs
and kinases. This observation suggests that the molecular
machines such as GPCRs and kinases perform meaningful work
(signaling) during rare and highly dissipative fluctuations. In
other words, the meaningful work involves transitions that
dissipate the energy by traversing rare conformational states.
These methodologies could open a new world of possibilities

for simulating driven systems. In effect, we have developed an
implicit protocol for connecting machinery to its external
environment; the possibilities for augmenting simulations of
cellular components, fluidic processes, and generic mesoscopic
self-assembly with their full, “functional” environments are
immense.

Conformational Entropy and Intrinsically Disordered
Proteins

Molecular simulations coupled with MSMs have been used to
successfully characterize the extensive conformational hetero-
geneity associated with the dynamics of the intrinsically
disordered proteins (IDPs). Recently, MSM-based investiga-
tions of IDPs have shed light on the mechanisms of fibril
formation for amyloid-β (Aβ), human islet amyloid polypeptide
(hIAPP), and other intrinsically disordered peptides.12,13

Markov state models of the structural ensemble of Aβ40 and
Aβ42 peptides reveal the molecular origins of the higher
aggregation propensity of Aβ42 compared with that of Aβ40. Lin

et al. have also shown how conformational preferences of Aβ
change due to the pathogenic mutant E22K (the Italian
mutant).12 Normally, β-sheet formation propensity of the Aβ42
peptide changes due to increases in peptide length. The Italian
mutation, by contrast, increases the helix formation propensity,
which enhances helix−helix interactions between monomers
resulting in altered mechanism and kinetics of Aβ aggregation.
Similarly, Qiao et al. have found conformations with exposed
hydrophobic residues and significant β-sheet content in MSMs
of the hIAPP.13 These conformations could act as a template to
induce nucleation of hIAPP fibrils. This mechanism of fibril
formation is known as conformational selection, whereby
monomer conformations containing pre-existing β-sheet
elements selectively collapse and further grow to form fibrils.
These observations are consistent not only with several other
recent simulations of IDPs but also with experimental results
from ion mobility mass spectroscopy. These studies present an
ideal example of how MD simulations can provide structural
information that is not accessible by experiments and how
MSMs can help reduce the complex conformational space
exhibited in IDPs into simpler, human-comprehensible models.
To further elaborate upon the theme of IDPs, our group has

recently become more focused on order-upon-binding
dynamics. Over the course of the past decade, many
crystallographic structures have been submitted to the Protein
Data Bank containing small IDPs. Several of these structures
include a 22 residue fragment of tumor suppressor p53’s C-
terminal regulatory domain in complex with various binding
partners.39 What is intriguing about these particular structures
is that each complex has a unique p53-binding pose and, in
some cases, these poses are radically different. Of particular
note are S100ββ−p53 and sirtuin−p53 complexes, which
demonstrate that this same p53 fragment is able to stably bind
as both an α-helix and a β-sheet (Figure 6), respectively, and
has achieved this in order to inhibit apoptosis in a similar
fashion in both.40,41 How is it that a single peptide is able to
promiscuously bind in such a variety of ways? How can
elementary models, such as those proposed by Koshland and
Fischer, possibly explain these results?42,43

Figure 5. Illustration of protein folding systems’ nonnative, amyloid-like glassy states (at left for each system), juxtaposed with their respective native
state structures (at right). Time scales related to the formation of glassy β-structure, shown on a log scale (at left), are determined from MFPTs
within the respective protein folding MSMs. To suggest the nature of structural fluctuations within the glassy and native states, the colored bars
between the structures (on a scale from 0 to 100%) illustrate the mean percentage of β-content in each Markov state, as assigned by the algorithm
DSSP, framed by lines that represent ±1 SD in percentage. Centroids of these states are presented pictorially. Image reproduced with permission
from reference 35.
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As mentioned previously with Aβ aggregation, conforma-
tional selection, in the context of binding, argues that weakly
populated transition states are responsible for molecular
recognition and subsequent complex formation.44−46 This is
followed by a population shift toward more energetically stable
conformations. NMR studies have observed this phenomenon
in an IDP fragment of phospholamban binding to protein
kinase A.47 For IDPs, the population shift in conformational
selection is thought to be driven by a maximization of the
enthalpy of binding due to an increase in the interacting surface
area during folding-upon-binding48 This gain in enthalpy
overcomes the conformational entropy loss that is expected
as a result of increasing order within the system. However, the
specific dynamics and transition states that facilitate these
population shifts from unbound-and-disordered to bound-and-
ordered remain difficult to determine.
In conjunction with MSM analysis and TPT, atomistic MD

has the potential to be an excellent tool to characterize both the
kinetics and dynamics of folding-upon-binding for IDPs. Given
an appropriate set of order parameters, a series of states of the
ligand−target system can be identified from a MSM that
represents the binding pathway from unbound-and-unfolded
ligand to encounter complexes to bound-and-folded complex,
as described in Snow et al.49 Interestingly, in our studies of p53,
MSMs provide evidence for “fly casting”, a schema of binding
proposed by Shoemaker et al., in the formation of the p53−
sirtuin complex but not for binding of p53 to S100ββ.50

Analysis of several high-flux transition pathways reveals that
p53 c-terminal regulatory domain forms a transient encounter
complex at a distal site on sirtuin before formation of a stably
bound β-sheet.51 By contrast, the same peptide forms the α-
helix before binding to S100ββ. Both of these results suggest
that conformation selection in IDPs, such as p53, can indeed
manifest itself through different modes and further highlights
the complexity that can be yielded from disorder.

■ LIMITATIONS AND PROSPECTS
In 1990, Karplus and Petsko wrote, “Two limitations in existing
simulations are the approximations in the potential energy
functions and the lengths of the simulations. The first
introduces systematic errors and the second, statistical
errors”.52 This observation remains timely because these
limitations of MD simulations still represent two of the central
challenges in the field. Recent advances in hardware such as
graphical processing units53 (which are now deployed
extensively in supercomputer centers), special purpose
hardware (Anton),54 availability of distributed computing

platforms (Google Exacycle,33 Folding@home,55 Amazon
Web Services etc.), and novel sampling algorithms have made
the sampling of the long-time-scale phenomena feasible. For
example, 500 μs aggregate simulations of kinase catalytic
domain reported in a recent study by Shukla et al.11 could be
performed in approximately three months on a cluster with 100
GPUs. Similarly, systematic force-field development procedures
and availability of detailed experimental data sets for force field
parametrization have yielded better potential energy functions
for proteins.56,57

However, significant work still needs to be done in order to
accurately predict kinetic properties of the protein dynamics
and systematic validation of Markov state models. Recently, a
first step in this direction has been taken in the form of the
framework called “dynamical fingerprints”, which has been
developed to relate the experimental and MSM-derived kinetic
information.58 Several research groups are now focused on
developing protocols to systematically cross-validate the MSM
predictions and obtain MSM parameters using an optimization
protocol that produces the best estimate of the few slowest
dynamics modes of the protein dynamics.59

Finally, the exponential growth of sampling ability has led to
a deluge of information, which needs to be harnessed into
human-comprehendible insights. MSMs provide one way of
obtaining such mechanistic insights with broad applications in
the field of medicine. Despite its advantages, there are still
challenges associated with identifying the best decomposition
of conformational space, developing tools for improved error
estimation, and creating better approaches to connect MSMs to
experimental data. Consequently, this field of inquiry has bright
prospects for methodological advances and improving our
understanding of the physics of life.
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